Sains Malaysiana 52(10)(2023): 2815-2827
http://doi.org/10.17576/jsm-2023-5210-07
Purified
Polysaccharides Extracted from Grey Oyster Mushroom [Pleurotus sajor-caju (Fr.) Sing.] Stimulate Glucose Uptake in
C2C12 Myotubes through the activation of AMP-Activated Protein Kinase (AMPK)
and Glucose Transporter 1 (GLUT1) Proteins
(Polisakarida
Dimurnikan Diekstrak daripada Cendawan Tiram Kelabu [Pleurotus sajor-caju (Fr.) Sing.] Merangsang Pengambilan Glukosa dalam Miotiub C2C12 melalui
Pengaktifan Protein Kinase Diaktifkan AMP (AMPK) dan Protein Pengangkut Glukosa
1 (GLUT1))
KULWANIT PATNINAN1,
DECHA SERMWITTAYAWONG1,*, SUPADA NUINAMWONG1, WIPAPAN
KHIMMAKTONG1, KUSUMARN NOIPHA2 & NONGPORN
HUTADILOK-TOWATANA1
1Division of Health
and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai,
Songkhla 90110, Thailand
2Faculty of Health
and Sports Science, Thaksin University, Paphayom, Phatthalung, 93110
Thailand
Received: 10 May 2023/Accepted: 7 September 2023
Abstract
The grey oyster mushroom [Pleurotus
sajor-caju (Fr.) Sing.], an edible mushroom, has been known as a source of
bioactive compounds, including polysaccharides. Polysaccharides from this mushroom have been shown to possess
antidiabetic activity both in vivo and in vitro. However, antidiabetic mechanism of partially
purified or purified polysaccharides from the gray oyster mushroom has not been
characterized. In this study, we extracted and purified polysaccharides from
gray oyster mushrooms and used them to investigate the antidiabetic mechanism
in the context of C2C12 myotubes. Using
Fourier Transform Infrared spectroscopy (FTIR) analysis and enzymatic assay, we
showed that the polysaccharide sample, namely 9S1-1, contains b-glucose, a-glucose, and mannose as the
monosaccharide composition, and b-glucan
is the major type of polysaccharide in the sample. This 9S1-1 sample
dose-dependently stimulated glucose uptake in C2C12 myotubes. Further analysis
showed that the sample activated the AMP-activated protein kinase (AMPK) but
not Akt serine/threonine kinase (AKT) phosphorylation, suggesting that the
stimulation is AMPK-dependent. Moreover, we showed that compound c, an
inhibitor of AMPK, inhibited glucose uptake in 9S1-1-stimulated cells,
confirming the requirement of AMPK in the glucose uptake activated by the 9S1-1
sample. In addition, it promoted glucose
transporter protein type 1 (GLUT1) but not GLUT4 protein expression. These
results suggest that GLUT1 may be responsible for the stimulation of glucose
uptake in 9S1-1-activated cells. Together, these data illustrate the
antidiabetic mechanism of polysaccharides isolated from the gray oyster
mushroom and the potential use of the polysaccharide as an antidiabetic
agent.
Keywords: AMPK; antidiabetic; GLUT1; Gray
oyster mushroom; Pleurotus sajor-caju
Abstract
Cendawan tiram kelabu [Pleurotus
sajor-caju (Fr.) Sing.], cendawan yang boleh dimakan, telah dikenali
sebagai sumber sebatian bioaktif, termasuk polisakarida. Polisakarida daripada
cendawan ini telah terbukti mempunyai aktiviti antidiabetis secara in vivo dan in vitro. Walau bagaimanapun, mekanisme antidiabetis bagi
polisakarida yang telah dimurnikan sebahagian atau dimurnikan daripada cendawan
tiram kelabu belum dicirikan. Dalam kajian ini, kami mengekstrak dan memurnikan
polisakarida daripada cendawan tiram kelabu dan menggunakannya untuk mengkaji
mekanisme antidiabetis dalam konteks miotiub C2C12. Dengan menggunakan analisis
spektroskopi Transformasi Fourier Inframerah (FTIR) dan asai enzim, kami
menunjukkan bahawa sampel polisakarida, iaitu 9S1-1, mengandungi b-glukosa, a-glukosa dan manosa sebagai
komposisi monosakarida dan b-glukan ialah
jenis utama polisakarida dalam sampel. Sampel 9S1-1 ini merangsang pengambilan
glukosa dos berkeperluan dalam miotiub C2C12. Analisis lanjut menunjukkan bahawa
sampel mengaktifkan protein kinase diaktifkan AMP (AMPK) tetapi bukan
fosforilasi Akt serin/threonina kinase (AKT), mencadangkan bahawa rangsangan
adalah sandaran AMPK. Selain itu, kami menunjukkan bahawa kompaun c, iaitu
perencat AMPK, merencat pengambilan glukosa dalam sel yang dirangsang 9S1-1,
mengesahkan keperluan AMPK dalam pengambilan glukosa yang diaktifkan oleh
sampel 9S1-1. Di samping itu, ia menggalakkan protein pengangkut glukosa jenis
1 (GLUT1) tetapi bukan ekspresi protein GLUT4. Keputusan ini menunjukkan bahawa
GLUT1 mungkin bertanggungjawab untuk rangsangan pengambilan glukosa dalam sel
yang diaktifkan 9S1-1. Data ini menggambarkan mekanisme antidiabetis
polisakarida yang dipencilkan daripada cendawan tiram kelabu dan potensi
penggunaan polisakarida sebagai agen antidiabetis.
Kata kunci: AMPK; antidiabetis; Cendawan
tiram kelabu; GLUT1; Pleurotus sajor-caju
REFERENCES
Abbud, W.,
Habinowski, S., Zhang, J-Z., Kendrew, J., Elkairi, F.S., Kemp, B.E., Witters,
L.A. & Ismail-Beigi, F. 2000. Stimulation of AMP-Activated Protein Kinase
(AMPK) is associated with enhancement of Glut1-mediated glucose transport. Archives
of Biochemistry and Biophysics 380(2): 347-352.
Abdelmoez, A.M., Sardón Puig, L.,
Smith, J.A.B., Gabriel, B.M., Savikj, M., Dollet, L., Chibalin, A.V., Krook,
A., Zierath, J.R. & Pillon, N.J. 2019. Comparative profiling of skeletal
muscle models reveals heterogeneity of transcriptome and metabolism. American
Journal of Physiology-Cell Physiology 318(3): C615-C626.
Al-Khalili, L., Forsgren, M.,
Kannisto, K., Zierath, J.R., Lönnqvist, F. & Krook, A. 2005. Enhanced
insulin-stimulated glycogen synthesis in response to insulin, metformin or
rosiglitazone is associated with increased mRNA expression of GLUT4 and
peroxisomal proliferator activator receptor gamma co-activator 1. Diabetologia 48(6): 1173-1179.
Aramabašić Jovanović, J.,
Mihailović, M., Uskoković, A., Grdović, N., Dinić, S. &
Vidaković, M. 2021. The effects of major mushroom bioactive compounds on
mechanisms that control blood glucose level. Journal of Fungi (Basel,
Switzerland) 7(1): 58.
Association, A.D. 2021. Addendum. 2.
Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes
- 2021. Diabetes Care 2021: 44 (Suppl. 1): S15-S33. Diabetes Care 44(9): 2182.
Ben-Abraham, R., Gazit, V., Vofsi,
O., Ben-Shlomo, I., Reznick, A.Z. & Katz, Y. 2003. β-phenylpyruvate
and glucose uptake in isolated mouse soleus muscle and cultured C2C12 muscle
cells. Journal of Cellular Biochemistry 90(5): 957-963.
Bradford, M.M. 1976. A rapid and
sensitive method for the quantitation of microgram quantities of protein
utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1): 248-254.
Casadei, L., Vallorani, L.,
Gioacchini, A.M., Guescini, M., Burattini, S., D’Emilio, A., Biagiotti, L.,
Falcieri, E. & Stocchi, V. 2009. Proteomics-based investigation in C2C12
myoblast differentiation. European Journal of Histochemistry 53(4):
261-268.
Chakraborty, S. & Devi
Rajeswari, V. 2022. Biomedical aspects of beta-glucan on glucose metabolism and
its role on primary gene PIK3R1. Journal of Functional Foods 99: 105296.
Chaudhury, A., Duvoor, C., Reddy
Dendi, V.S., Kraleti, S., Chada, A., Ravilla, R., Marco, A., Shekhawat, N.S.,
Montales, M.T., Kuriakose, K., Sasapu, A., Beebe, A., Patil, N., Musham, C.K.,
Lohani, G.P. & Mirza, W. 2017. Clinical review of antidiabetic drugs:
Implications for Type 2 diabetes mellitus management. Frontiers in
Endocrinology 8: 6.
Chen, J., Li, H., Li, T., Fu, W.,
Du, X., Liu, C. & Zhang, W. 2020. Alisol A-24-acetate promotes glucose
uptake via activation of AMPK in C2C12 myotubes. BMC Complementary Medicine
and Therapies 20(1): 22.
Chun, S., Gopal, J. & Muthu, M.
2021. Antioxidant activity of mushroom extracts/polysaccharides-Their antiviral
properties and plausible AntiCOVID-19 properties. Antioxidants (Basel,
Switzerland) 10(12): 1899.
Dubois, M., Gilles, K., Hamilton,
J.K., Rebers, P.A. & Smith, F. 1951. A colorimetric method for the
determination of sugars. Nature 168(4265): 167.
Eickelschulte, S., Hartwig, S.,
Leiser, B., Lehr, S., Joschko, V., Chokkalingam, M., Chadt, A. & Al-Hasani,
H. 2021. AKT/AMPK-mediated phosphorylation of TBC1D4 disrupts the interaction
with insulin-regulated aminopeptidase. Journal of Biological Chemistry 296: 100637.
Elsayed, E.A., El Enshasy, H.,
Wadaan, M.A.M. & Aziz, R. 2014. Mushrooms: A potential natural source of
anti-inflammatory compounds for medical applications. Mediators of
Inflammation 2014: 805841.
Ferdowsi, P.V., Ahuja, K.D.K.,
Beckett, J.M. & Myers, S. 2022. Capsaicin and zinc promote glucose uptake
in C2C12 skeletal muscle cells through a common calcium signalling pathway. International
Journal of Molecular Sciences 23(4): 2207.
Galichet, A. 2001. FTIR
spectroscopic analysis of Saccharomyces cerevisiae cell walls: Study of
an anomalous strain exhibiting a pink-colored cell phenotype. FEMS
Microbiology Letters 197(2): 179-186.
Gebreyohannes, G., Nyerere, A., Bii,
C. & Berhe Sbhatu, D. 2019. Determination of antimicrobial activity of
extracts of indigenous wild mushrooms against pathogenic organisms. Evidence-Based
Complementary and Alternative Medicine 2019: 6212673.
International Diabetes Federation.
2021. IDF Diabetes Atlas. 10th ed. Brussels, Belgium: International
Diabetes Federation.
Jakkawanpitak, C.,
Hutadilok-Towatana, N. & Sermwittayawong, D. 2020. Fungal-like particles
and macrophage-conditioned medium are inflammatory elicitors for 3T3-L1
adipocytes. Scientific Reports 10(1): 9437.
Kanagasabapathy, G., Kuppusamy,
U.R., Abd Malek, S.N., Abdulla, M.A., Chua, K.H. & Sabaratnam, V. 2012.
Glucan-rich polysaccharides from Pleurotus sajor-caju (Fr.) Singer
prevents glucose intolerance, insulin resistance and inflammation in C57BL/6J
mice fed a high-fat diet. BMC Complement. Altern. Med. 12: 261.
Kim, J.H., Lee, J.O., Moon, J.W.,
Kang, M.J., Byun, W.S., Han, J.A., Kim, S.J., Park, S.H. & Kim, H.S. 2020.
Laminarin from Salicornia herbacea stimulates glucose uptake through
AMPK-p38 MAPK pathways in L6 muscle cells. Natural Product Communications 15(3): 1934578X20901409.
Klip, A., McGraw, T.E. & James,
D.E. 2019. Thirty sweet years of GLUT4. Journal of Biological Chemistry 294(30): 11369-11381.
Kosanić, M., Ranković, B.
& Dašić, M. 2012. Mushrooms as possible antioxidant and antimicrobial
agents. Iranian Journal of Pharmaceutical Research 11(4): 1095-1102.
Kumar, K., Mehra, R., Guiné, R.P.F.,
Lima, M.J., Kumar, N., Kaushik, R., Ahmed, N., Yadav, A.N. & Kumar, H.
2021. Edible mushrooms: A comprehensive review on bioactive compounds with
health benefits and processing aspects. Foods (Basel, Switzerland) 10(12): 2996.
Liu, J., Zhang, J.F., Lu, J.Z.,
Zhang, D.L., Li, K., Su, K., Wang, J., Zhang, Y.M., Wang, N., Yang, S.T., Bu,
L. & Ou-Yang, J.P. 2013. Astragalus polysaccharide stimulates glucose
uptake in L6 myotubes through AMPK activation and AS160/TBC1D4 phosphorylation. Acta Pharmacol. Sin. 34(1): 137-145.
Manning, B.D. & Toker, A. 2017.
AKT/PKB signaling: Navigating the network. Cell 169(3): 381-405.
Mian, I., Pierre-Louis, W.S., Dole,
N., Gilberti, R.M., Dodge-Kafka, K. & Tirnauer, J.S. 2012. LKB1
destabilizes microtubules in myoblasts and contributes to myoblast
differentiation. PloS ONE 7(2): e31583-e31583.
Ng, S.H., Mohd Zain, M.S., Zakaria,
F., Wan Ishak, W.R. & Wan Ahmad, W.A.N. 2015. Hypoglycemic and antidiabetic
effect of Pleurotus sajor-caju aqueous extract in normal and streptozotocin-induced
diabetic rats. BioMed Research International 2015: 214918.
Nitulescu Mihai, G., Van De Venter,
M., Nitulescu, G., Ungurianu, A., Juzenas, P., Peng, Q., Olaru Tudorel, O.,
Grădinaru, D., Tsatsakis, A., Tsoukalas, D., Spandidos, D.A. & Margina,
D. 2018. The Akt pathway in oncology therapy and beyond (Review). Int. J.
Oncol. 53(6): 2319-2331.
Park, H.J. 2022. Current uses of
mushrooms in cancer treatment and their anticancer mechanisms. International
Journal of Molecular Sciences 23(18): 10502.
Pragallapati, S. & Manyam, R.
2019. Glucose transporter 1 in health and disease. Journal of Oral and
Maxillofacial Pathology 23(3): 443-449.
Sakamoto, K., McCarthy, A., Smith,
D., Green, K.A., Grahame Hardie, D., Ashworth, A. & Alessi, D.R. 2005.
Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose
uptake during contraction. The EMBO Journal 24(10): 1810-1820.
Sermwittayawong, D., Patninan, K.,
Jakkawanpitak, C., Phothiphiphit, S., Boonyarattanakalin, S., Inafuku, M., Oku,
H., Noipha, K. & Hutadilok-Towatana, N. 2020. Effect of purified soluble
polysaccharides extracted from gray oyster mushroom [Pleurotus sajor-caju (fr.) Sing.] on 3t3-l1 adipocytes. Sains Malaysiana 49(1): 103-112.
Sermwittayawong, D., Patninan, K.,
Phothiphiphit, S., Boonyarattanakalin, S., Sermwittayawong, N. &
Hutadilok‐Towatana, N. 2018. Purification, characterization, and
biological activities of purified polysaccharides extracted from the gray
oyster mushroom [Pleurotus sajor‐caju (Fr.) Sing.]. Journal of
Food Biochemistry 42(5): e12606.
Steinberg, G.R. & Carling, D.
2019. AMP-activated protein kinase: The current landscape for drug development. Nature Reviews Drug Discovery 18(7): 527-551.
Synytsya, A. & Novak, M. 2014.
Structural analysis of glucans. Annals of Translational Medicine 2(2):
17.
Tortorella, L.L. & Pilch, P.F.
2002. C2C12 myocytes lack an insulin-responsive vesicular compartment despite
dexamethasone-induced GLUT4 expression. American Journal of
Physiology-Endocrinology and Metabolism 283(3): E514-E524.
Trefts, E. & Shaw, R.J. 2021.
AMPK: Restoring metabolic homeostasis over space and time. Molecular Cell 81(18): 3677-3690.
Tung, Y.T., Pan, C.H., Chien, Y.W.
& Huang, H.Y. 2020. Edible mushrooms: Novel medicinal agents to combat
metabolic syndrome and associated diseases. Current Pharmaceutical Design 26(39): 4970-4981.
Wan, Y., Xu, X., Gilbert, R.G. &
Sullivan, M.A. 2022. A review on the structure and anti-diabetic (Type 2)
functions of β-glucans. Foods 11(1): 57.
Wang, T., Wang, J., Hu, X., Huang,
X.J. & Chen, G.X. 2020. Current understanding of glucose transporter 4
expression and functional mechanisms. World Journal of Biological Chemistry 11(3): 76-98.
Wei, Y., Zhou, J., Yu, H. & Jin,
X. 2019. AKT phosphorylation sites of Ser473 and Thr308 regulate AKT
degradation. Bioscience, Biotechnology, and Biochemistry 83(3): 429-435.
Wong, C.Y., Al-Salami, H. &
Dass, C.R. 2020. C2C12 cell model: Its role in understanding of insulin
resistance at the molecular level and pharmaceutical development at the
preclinical stage. Journal of Pharmacy and Pharmacology 72(12):
1667-1693.
Yun, H., Lee, J.H., Park, C.E., Kim,
M.J., Min, B.I., Bae, H., Choe, W., Kang, I., Kim, S.S. & Ha, J. 2009.
Inulin increases glucose transport in C2C12 myotubes and HepG2 cells via
activation of AMP-activated protein kinase and phosphatidylinositol 3-kinase
pathways. Journal of Medicinal Food 12(5): 1023-1028.
*Corresponding author; email:
decha.s@psu.ac.th
|